Preserving the environment and developing agricultural products that do not harm unintended targets are top priorities for many scientists and farmers, as well as environmentalists. It’s a new era of crop management known as precision agriculture. It maximizes productivity while minimizing energy use and environmental impacts.
One of the major challenges being addressed by precision agriculture is over-fertilization. About 30 percent of nitrate fertilizer applied to U.S. crops simply washes away. This wastes the fertilizer and the energy used to make it, in addition to posing possible harm to the environment
Support from the National Science Foundation (NSF) has led to the development by start-up SupraSensor Technologies of a novel sensor to detect nitrate fertilizer in soil. The SupraSensor device is designed to give farmers a highly accurate, virtually constant stream of data on nitrate levels. The device is an excellent example of highly applied science with roots in basic research -- in this case supramolecular chemistry at the University of Oregon.
Supramolecular chemistry is a simple idea of how two or more molecules might interact or bind with one another without forming strong irreversible interactions. A supramolecular interaction is key to how the SupraSensor nitrogen sensor works. The research team has also since developed electronics to store data, wireless capability, even a smart phone app.
The research in this episode was supported by NSF awards #0718242, Phenyl-Acetylene Scaffolding: Experimental, Theoretical, and Materials Studies of New Molecular Systems; and #0545206, CAREER: Supramolecular Main Group Coordination Chemistry. CAREER is NSF’s Faculty Early Career Development Program. Also related is award #1237240, Innovation Corps (I-Corps): Commercialization of new anion-sensing materials.