Results 1 to 8 of 8

Thread: Microsoft Cognitive Toolkit, open source deep learning toolkit, Microsoft Corporation, Redmond, Washington, USA

  1. #1

    Microsoft Cognitive Toolkit, open source deep learning toolkit, Microsoft Corporation, Redmond, Washington, USA

    Formerly Computational Network Toolkit (CNTK)

    Developer - Microsoft Corporation

    Website -

    Microsoft Cognitive Toolkit on Wikipedia

  2. #2

  3. #3

    CNTK: Microsoft's open-source deep-learning toolkit

    Published on May 27, 2016

    This talk will introduce CNTK, Microsoft’s cutting-edge open-source deep-learning toolkit for Windows and Linux. CNTK is a computation-graph based deep-learning toolkit for training and evaluating deep neural networks. Microsoft product groups use CNTK, for example to create the Cortana speech models and web ranking. CNTK supports feed-forward, convolutional, and recurrent networks for speech, image, and text workloads, also in combination. Popular network types are supported either natively (convolution) or can be described as a CNTK configuration (LSTM, sequence-to-sequence). CNTK scales to multiple GPU servers and is designed around efficiency. We will give an overview of CNTK's general architecture and describe the specific methods and algorithms used for automatic differentiation, recurrent-loop inference and execution, memory sharing, on-the-fly randomization of large corpora, and multi-server parallelization. We will then discuss how typical uses looks like for relevant tasks like image recognition, sequence-to-sequence modeling, and speech recognition.

  4. #4

    Tutorial: Deep Learning

    Published on Jun 3, 2016

    Deep Learning allows computational models composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection, and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large datasets by using the back-propagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about dramatic improvements in processing images, video, speech and audio, while recurrent nets have shone on sequential data such as text and speech. Representation learning is a set of methods that allows a machine to be fed with raw data and to automatically discover the representations needed for detection or classification. Deep learning methods are representation learning methods with multiple levels of representation, obtained by composing simple but non-linear modules that each transform the representation at one level (starting with the raw input) into a representation at a higher, slightly more abstract level. This tutorial will introduce the fundamentals of deep learning, discuss applications, and close with challenges ahead.

  5. #5

    Tutorial: introduction to reinforcement learning with function approximation

    Published on Jun 3, 2016

    Reinforcement learning is a body of theory and techniques for optimal sequential decision making developed in the last thirty years primarily within the machine learning and operations research communities, and which has separately become important in psychology and neuroscience. This tutorial will develop an intuitive understanding of the underlying formal problem (Markov decision processes) and its core solution methods, including dynamic programming, Monte Carlo methods, and temporal-difference learning. It will focus on how these methods have been combined with parametric function approximation, including deep learning, to find good approximate solutions to problems that are otherwise too large to be addressed at all. Finally, it will briefly survey some recent developments in function approximation, eligibility traces, and off-policy learning.

  6. #6

    Unlock deeper learning with the new Microsoft Cognitive Toolkit

    Published on Oct 25, 2016

    Microsoft Cognitive Toolkit (formerly known as CNTK) version 2.0 is now available to Developers and Data Scientists. Cognitive Toolkit is a free, easy-to-use, open-source toolkit that trains deep learning algorithms to learn like the human brain.

  7. #7

  8. #8

    Microsoft Cognitive Toolkit (CNTK) for deep learning

    Published on Jul 26, 2017

    Microsoft Cognitive Toolkit (CNTK) is a production-grade, open-source, deep-learning library. In the spirit of democratizing AI tools, CNTK embraces fully open development, is available on GitHub, and provides support for both Windows and Linux. The recent 2.0 release (currently in release candidate) packs in several enhancements—most notably Python/C++ API support, easy-to-onboard tutorials (as Python notebooks) and examples, and an easy-to-use Layers interface. These enhancements, combined with unparalleled scalability on NVIDIA hardware, were demonstrated by both NVIDIA at SuperComputing 2016 and Cray at NIPS 2016. These enhancements from the CNTK supported Microsoft in its recent breakthrough in speech recognition, reaching human parity in conversational speech. The toolkit is used in all kinds of deep learning, including image, video, speech, and text data. The speakers will discuss the current features of the toolkit’s release and its application to deep learning projects.

Similar Threads

  1. Replies: 1
    Last Post: 8th January 2017, 09:22
  2. Replies: 1
    Last Post: 13th December 2016, 00:53
  3. Replies: 5
    Last Post: 12th May 2016, 17:51
  4. Replies: 3
    Last Post: 20th April 2016, 20:11
  5. Replies: 1
    Last Post: 27th February 2016, 18:22

Социальные закладки

Социальные закладки

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts