DALER (Deployable Air-Land Exploration Robot), Laboratory of Intelligent Systems, Lausanne, Switzerland


A Flying Robot with Adaptive Morphology for Multi-Modal Locomotion

Published on Jul 25, 2013

At the Laboratory of Intelligent Systems we are developing a novel flying platform which has the ability to move on the ground by using its wings only. Using the wings as whegs to move on rough terrains instead of adding an additional structure to the robot allows to minimize its structural mass. Therefore, this design minimizes the total weight of the platform, and thus minimizes the impact on the flight performance of the robot. The morphology of the robot is optimized for ground speed. It can move forward at 0.2 m/s (0.7 BL/s), and can rotate on spot at 25°/s. The robot is capable of walking with different gaits, it can move on different surfaces, it can overcome high obstacles, and can also navigate in rough terrains.
 

A flying robot that can walk

Published on Jan 20, 2015

The issue of how to use one robot in multiple terrains is an ongoing question in robotics research. In a paper published in Bioinspiration and Biomimetics today a team from LIS, EPFL and NCCR Robotics propose a new kind of flying robot that can also walk. Called the DALER (Deployable Air-Land Exploration Robot), the robot uses adaptive morphology inspired by the common vampire bat, Desmodus rotundus, meaning that the wings have been actuated using a foldable skeleton mechanism covered with a soft fabric such that they can be used both as wings and as legs (whegs).

It is hoped that a future application of the DALER might be to find victims in dangerous areas after a natural disaster. The DALER can be remotely deployed to fly to an affected area, and then can walk through a disaster zone (e.g. a damaged building) to locate victims, meaning that human rescue teams can concentrate their efforts where they are needed, rather than using time to search for victims in a dangerous environment. Future development of the DALER will include the possibility to hover and to take off autonomously from the ground in order to allow the robot to return to the air and come back to base after the mission.
 
Back
Top