Miscellaneous


Seahorse's Armor Gives Engineers Insight Into Robotics Designs

Published on May 1, 2013

The tail of a seahorse can be compressed to about half its size before permanent damage occurs, engineers at the University of California, San Diego, have found. The tail's exceptional flexibility is due to its structure, made up of bony, armored plates, which slide past each other. Researchers are hoping to use a similar structure to create a flexible robotic arm equipped with muscles made out of polymer, which could be used in medical devices, underwater exploration and unmanned bomb detection and detonation.
Thank you to the Birch Aquarium at the Scripps Institution of Oceanography at UC San Diego
Work by the McKittrick and Meyers research groups at the Jacobs School of Engineering at UC San Diego
 

Robert Full: The secrets of nature's grossest creatures, channeled into robots

Published on Jun 6, 2014

How can robots learn to stabilize on rough terrain, walk upside down, do gymnastic maneuvers in air and run into walls without harming themselves? Robert Full takes a look at the incredible body of the cockroach to show what it can teach robotics engineers.
 

Mechameleon - 3D Animation Short Film

Uploaded on Jun 17, 2008

Please take the time of 1 min. and comment!!!! its very important to me!!!!

this is my qualification video for 3d- animation at my school, still not final though, just a test

the idea for this project came from combining the words mechanic and chameleon to mechameleon, i thought it was quite funny and intresting so i picked this wordplay as a topic....

i gonna update the video asap, till then just watch and leave a comment please!!!

sound was done by a friend mine from my class
 

Bio-Inspired Tendon-Operated Continuum Robotics

Published on Dec 3, 2014

Curved tendons can provide new capabilities to robots that look and act like elephant's trunks or octopus tentacles
 

RI Seminar: Mark Cutkosky : Bio-Inspired Dynamic Surface Grasping

Streamed live on Mar 20, 2015

Mark Cutkosky
Professor, Stanford University

March 20, 2015

Abstract
The adhesive system of the gecko has several remarkable properties that make it ideal for agility on vertical and overhanging surfaces. It requires very little preload for sticking and (unlike sticky tape) very little effort to detach. It resists fouling when the gecko travels over dusty surfaces, and it is controllable: the amount of adhesion in the normal direction depends on the applied tangential force. Moreover, it is fast, allowing the gecko to climb at speeds of a meter per second. The desirable properties of the gecko's adhesive apparatus are a result of its unique, hierarchical structure, with feature sizes ranging from hundreds of nanometers to millimeters. Over the last several years, analogous features have been incorporated into various synthetic gecko-inspired adhesives, with gradually improving performance from the standpoints of adhesion, ease and speed of attachment and detachment, etc. In this talk we will explore recent developments to scale gecko-inspired directional adhesives beyond small wall-climbing robots to new applications including perching quadrotors and grappling space debris in orbit. These applications require scaling the adhesives to areas of 10x10cm or larger on flat or curved surfaces without loss in performance, and attaching in milliseconds to prevent bouncing. The solutions draw some inspiration from the arrangement of tendons and other compliant structures in the gecko's toe.

Speaker Biography
Mark R. Cutkosky is the Fletcher Jones Professor in the Dept. of Mechanical Engineering at Stanford University. He joined Stanford in 1985, after working in the Robotics Institute at Carnegie Mellon University and as a design engineer at ALCOA, in Pittsburgh, PA. He received his Ph.D. in Mechanical Engineering from Carnegie Mellon University in 1985. Cutkosky's research activities include robotic manipulation and tactile sensing and the design and fabrication of biologically inspired robots. He has graduated over 40 Ph.D. students and published extensively in these areas. He consults with companies on robotics and human/computer interaction devices and holds several patents on related technologies. His work has been featured in Discover Magazine, The New York Times, National Geographic, Time Magazine and other publications and has appeared on PBS NOVA, CBS Evening News, and other popular media. Cutkosky’s awards include a Fulbright Faculty Chair (Italy 2002), Fletcher Jones and Charles M. Pigott Chairs at Stanford University, an NSF Presidential Young Investigator award and Times Magazine Best Innovations (2006) for the Stickybot gecko-inspired robot. He is a fellow of ASME and IEEE and a member of Sigma Xi.
 

RI Seminar: Greg Sawicki : Spring-loading human locomotion: Bio inspired lower-limb design

Streamed live on Oct 24, 2014

Greg Sawicki
Assistant Professor of Biomedical Engineering, North Carolina State University

Spring-loading human locomotion: Taking inspiration from biology to improve lower-limb exoskeleton design

Abstract
The goal of the Human Physiology of Wearable Robotics (PoWeR) Laboratory is to discover and exploit key principles of locomotion neuromechanics in order to build wearable devices that can augment intact and/or restore impaired human locomotion. The primary performance goal of such devices is to reduce metabolic energy consumption of the user. Our design approach is motivated by a key passive dynamic principle that is crucial to efficient movement- the effective cycling of mechanical energy from the body’s center of mass to elastic tissues (i.e. tendon and aponeurosis) and back. In humans, a crucial site of elastic energy storage and return is the compliant triceps surae-Achilles tendon muscle-tendon unit – whereby, during walking, an effective ‘catapult mechanism’ is achieved by finely ‘tuned’ coordination of muscle force output. This controlled energy storage and release in elastic structures decreases the input energy demands on underlying power sources in the system (i.e. the muscles) while providing large short bursts of mechanical energy to power the step-to-step transition.

First, I discuss the motivation and basic science behind the design of a passive elastic exoskeleton and novel clutching mechanism that can reduce the musculoskeletal loads on plantarflexor muscles by storage and release of elastic energy in a parallel spring worn about the ankle (i.e. exo-tendon) during human walking.

Then, I address a crucial question in the design of wearable assistive devices: How does a mechanical element (motor or spring) acting in parallel with biological muscle-tendon unit influence its underlying ‘tuned’ elastic behavior? I examine how parallel assistance (e.g. from an exoskeleton) alters muscle-tendon interaction using a simple, forward dynamics (i.e. predictive) model of the ankle plantarflexors during vertical hopping with exo-tendons. When possible, I compare model estimates of muscle dynamics (i.e. length, velocity trajectories) to human data using functional ultrasound images taken from the triceps surae muscles with and without exo-tendon assistance. Finally, I discuss how this simple modeling-experimental framework could be used to (1) optimize mechanical assistance in terms of the user’s energetic benefit, injury risk and adaptation time and (2) elucidate underlying mechanisms that may drive preferred behaviors during human movement. A common theme emerges: More is not always better. That is, there are potential side-effects to exoskeleton designs that maximize reductions in musculoskeletal loading by ‘turning up the dial’ on mechanical assistance.

Speaker Biography
Dr. Gregory S. Sawicki is an Assistant Professor in the Joint Department of Biomedical Engineering at North Carolina State University and the University of North Carolina at Chapel Hill. He received B.S. and M.S. degrees in Mechanical Engineering from Cornell University (1999) and the University of California-Davis (2001). Prior to his arrival at NC State in summer 2009, Dr. Sawicki completed his Ph.D. in Human Neuromechanics at the University of Michigan, Ann-Arbor (2007) and was an NIH-funded Post-Doctoral Fellow in Integrative Biology at Brown University (2007-2009). Dr. Sawicki’s research area is Rehabilitation Engineering. He directs the Human Physiology of Wearable Robotics (PoWeR) laboratory focusing on uncovering fundamental principles of locomotion mechanics, energetics and neural control in both healthy and impaired (e.g. stroke) populations. The long term vision of the Human PoWeR lab is to exploit useful principles of human locomotion- applying them to motivate bio-inspired designs for state of the art lower-limb exoskeletons prostheses.
 

Published on Aug 12, 2015

Fumiya Iida’s research looks at how robotics can be improved by taking inspiration from nature, whether that’s learning about intelligence, or finding ways to improve robotic locomotion. A robot requires between ten and 100 times more energy than an animal to do the same thing. Iida’s lab is filled with a wide array of hopping robots, which may take their inspiration from grasshoppers, humans or even dinosaurs. One of his group’s developments, the ‘Chairless Chair’, is a wearable device that allows users to lock their knee joints and ‘sit’ anywhere, without the need for a chair.
 

How do robots copy animals? | At-Bristol Science Centre

Published on Aug 14, 2015

Falcons, walruses, lobsters; they all have one thing in common. They are helping engineers to design and build the next generation of exciting robots. Beth of the Live Science Team visits the Bristol Robotics Laboratory to find out more about the cutting edge science of biomimicry.


Bioinspired Robotics: smarter, softer, safer

Published on Aug 27, 2015

The Bioinspired Robotics platform at Harvard’s Wyss Institute for Biologically Inspired Engineering looks into Nature to obtain insights for the development of new robotic components that are smarter, softer, and safer than conventional industrial robots. By looking at natural intelligence, collective behavior, biomechanics, and material properties not found in manmade systems, scientists at the Wyss Institute and around the world are building new kinds of robots that can co-exist and coordinate with humans. In the future, researchers envision humans and robots will interact in ways we never previously imagined.
 

The terrifying promise of robot bugs

Published on May 5, 2013

Imitating nature to build a better (or possibly more terrifying) future. We've been trying to build flapping-wing robots for hundreds of years, and now, ornithopters are finally being developed, and may be used mostly for military purposes.

Piezoelectrics make those little bugs possible, and also enhances the ability of robot arms to feel, in other news from the International Journal of Robotics.
 
Back
Top