Shintaro Inoue


CubiX: Portable Wire-Driven Parallel Robot Connecting to and Utilizing the Environment

Oct 8, 2024

Title: CubiX: Portable Wire-Driven Parallel Robot Connecting to and Utilizing the EnvironmentAuthors: Shintaro Inoue, Kento Kawaharazuka, Temma Suzuki, Sota Yuzaki, Kei Okada, Masayuki InabaA wire-driven parallel robot is a type of robotic system where multiple wires are used to control the movement of a end-effector. The wires are attached to the end-effector and anchored to fixed points on external structures. This configuration allows for the separation of actuators and end-effectors, enabling lightweight and simplified movable parts in the robot. However, its range of motion remains confined within the space formed by the wires, limiting the wire-driven capability to only within the pre-designed operational range. Here, in this study, we develop a wire-driven robot, CubiX, capable of connecting to and utilizing the environment. CubiX connects itself to the environment using up to 8 wires and drives itself by winding these wires. By integrating actuators for winding the wires into CubiX, a portable wire-driven parallel robot is realized without limitations on its workspace. Consequently, the robot can form parallel wire-driven structures by connecting wires to the environment at any operational location.
 

CubiXMusashi: Unleashing Unlimited Performance in Humanoid Robotics

Nov 1, 2024

website - https://shin0805.github.io/cubixmusashi

arxiv - https://arxiv.org/abs/2410.23682

Accepted at Humanoids2024

Title: CubiXMusashi: Fusion of Wire-Driven CubiX and Musculoskeletal Humanoid Musashi toward Unlimited Performance
Authors: Shintaro Inoue, Kento Kawaharazuka, Temma Suzuki, Sota Yuzaki, Yoshimoto Ribayashi, Yuta Sahara, Kei Okada

Humanoids exhibit a wide variety in terms of joint configuration, actuators, and degrees of freedom, resulting in different achievable movements and tasks for each type. Particularly, musculoskeletal humanoids are developed to closely emulate human body structure and movement functions, consisting of a skeletal framework driven by numerous muscle actuators. The redundant arrangement of muscles relative to the skeletal degrees of freedom has been used to represent the flexible and complex body movements observed in humans. However, due to this flexible body and high degrees of freedom, modeling, simulation, and control become extremely challenging, limiting the feasible movements and tasks. In this study, we integrate the musculoskeletal humanoid Musashi with the wire-driven robot CubiX, capable of connecting to the environment, to form CubiXMusashi. This combination addresses the shortcomings of traditional musculoskeletal humanoids and enables movements beyond the capabilities of other humanoids. CubiXMusashi connects to the environment with wires and drives by winding them, successfully achieving movements such as pull-up, rising from a lying pose, and mid-air kicking, which are difficult for Musashi alone. This concept demonstrates that various humanoids, not limited to musculoskeletal humanoids, can mitigate their physical constraints and acquire new abilities by connecting to the environment and driving through wires.
 
Back
Top