This video presents a methodology for successfully translating nonlinear real-time optimization based controllers from bipedal robots to a novel custom built self-contained powered transfemoral prosthesis: AMPRO.
To achieve this goal, we begin by collecting reference human locomotion data via Inertial measurement Units (IMUs). This data forms the basis for an optimization problem that generates virtual constraints, i.e., parametrized trajectories, for the prosthesis that provably yields walking in simulation. Utilizing methods that have proven successful in generating stable robotic locomotion, control Lyapunov function (CLF) based Quadratic Programs (QPs) are utilized to optimally track the resulting desired trajectories. The parameterization of the trajectories is determined through a combination of on-board sensing on the prosthesis together with IMU data, thereby coupling the actions of the user with the controller. Finally, impedance control is integrated into the QP yielding an optimization based control law that displays remarkable tracking and robustness, outperforming traditional PD and impedance control strategies. This is demonstrated experimentally on AMPRO through the implementation of the holistic sensing, algorithm and control framework, with the end result being stable and human-like walking.